Adaptive Neuro-Fuzzy Technique for Autonomous Ground Vehicle Navigation

نویسندگان

  • Auday Al-Mayyahi
  • William Wang
  • Phil Birch
چکیده

This article proposes an adaptive neuro-fuzzy inference system (ANFIS) for solving navigation problems of an autonomous ground vehicle (AGV). The system consists of four ANFIS controllers; two of which are used for regulating both the left and right angular velocities of the AGV in order to reach the target position; and other two ANFIS controllers are used for optimal heading adjustment in order to avoid obstacles. The two velocity controllers receive three sensor inputs: front distance (FD); right distance (RD) and left distance (LD) for the low-level motion control. Two heading controllers deploy the angle difference (AD) between the heading of AGV and the angle to the target to choose the optimal direction. The simulation experiments have been carried out under two different scenarios to investigate the feasibility of the proposed ANFIS technique. The simulation results have been presented using MATLAB software package; showing that ANFIS is capable of performing the navigation and path planning task safely and efficiently in a workspace populated with static obstacles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Neuro-Fuzzy Technique for Autonomous Ground

This article proposes an adaptive neuro-fuzzy inference system (ANFIS) for solving navigation problems of an autonomous ground vehicle (AGV). The system consists of four ANFIS controllers; two of which are used for regulating both the left and right angular velocities of the AGV in order to reach the target position; and other two ANFIS controllers are used for optimal heading adjustment in ord...

متن کامل

Autonomous System Controller for Vehicles Using Neuro-Fuzzy

this paper presents the approach of neuro fuzzy systems to design autonomous vehicle control system. The purposed intelligent controller deliberates obstacles avoidance, unstructured environment adaptation and speed scheduling of autonomous vehicle based on neuro-fuzzy with reinforcement learning mechanism. The purposed system provides the autonomous vehicle navigation and speed control in unst...

متن کامل

Behavior Integration via MS-ANFIS for Realistic Navigation of Multisensor Autonomous Vehicle

In the recent works either the obstacle avoidance of robot in the 2-D unconstrained environment or the wall following behavior of mobile robot in constrained motion has been discussed. In some of them target alignment behavior has been discussed. Also the integration of some but not sufficient behaviors have been discussed in some research works. But all of the behaviors have not yet been integ...

متن کامل

Reactive Navigation for Autonomous Guided Vehicle Using the Neuro-fuzzy Techniques

A Neuro-fuzzy control method for navigation of an Autonomous Guided Vehicle (AGV) robot is described. Robot navigation is defined as the guiding of a mobile robot to a desired destination or along a desired path in an environment characterized by a terrain and a set of distinct objects, such as obstacles and landmarks. The autonomous navigate ability and road following precision are mainly infl...

متن کامل

Intelligent mobile manipulator navigation using adaptive neuro-fuzzy systems

The work presented in this paper deals with the problem of autonomous and intelligent navigation of mobile manipulator, where the unavailability of a complete mathematical model of robot systems and uncertainties of sensor data make the used of approximate reasoning to the design of autonomous motion control very attractive. A modular fuzzy navigation method in changing and dynamic unstructured...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Robotics

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2014